

A Study of Clinical Profile and Management of Hypo/Hypernatremia in Patients Presenting to the Emergency Room with Altered Mental Status**Dr. Gupta Vikash S¹, Dr. Yashdip D. Patel², Dr. Ronak Joshi³, Dr. Savita Yadav⁴**¹ Assistant professor, Department of Emergency medicine, Geetanjali Medical College & Hospital, Udaipur, Rajasthan, India² Consultant general physician, Shrimant Fatehsinhrao Gaekwad General Hospital, bayad (Aravalli) Gujarat, India³ Junior Consultant in critical care medicine, Zydus Hospitals & Healthcare research pvt. Ltd., Ahmedabad, Gujarat⁴ Professor & HOD, Department of Emergency medicine, Geetanjali Medical College & Hospital, Udaipur, Rajasthan, India**Corresponding Author****Dr. Savita Yadav**

Professor & HOD, Department of Emergency medicine, Geetanjali Medical College & Hospital, Udaipur, Rajasthan, India

Article Received: 09-01-2025

Article Accepted: 31-01-2025

©2025 *Biomedical and Biopharmaceutical Research. This is an open access article under the terms of the Creative Commons Attribution4.0 International License.*

ABSTRACT

Background: Electrolyte disturbances, particularly hypo- and hypernatremia, are common causes of altered mental status (AMS) in emergency patients. These conditions, if not rapidly diagnosed and corrected, may lead to serious complications including cerebral edema, seizures, and death.

Objective: To assess the clinical presentation, sodium levels, management approaches, and outcomes of patients presenting with AMS due to hypo- or hypernatremia in a tertiary care emergency department.

Methods: A prospective observational study was conducted in a tertiary care hospital emergency room. One hundred and fifty patients presenting with AMS were enrolled. Serum sodium levels were measured at presentation and patients were categorized into hyponatremia (<135 mEq/L), hypernatremia (>145 mEq/L), or normonatremia (135–145 mEq/L). Clinical profiles, etiology, management, and outcomes were analyzed.

Results: Among 150 patients, 68 (45.3%) had hyponatremia, 42 (28%) had hypernatremia, and 40 (26.7%) were normonatremic. Common symptoms included confusion (82.6%), lethargy (65.3%), and seizures (18.6%). Hypovolemia was the most frequent etiology in hyponatremic patients, whereas dehydration and sepsis were predominant in hypernatremia. Mortality was higher in hypernatremic patients (19%) compared to hyponatremic (11.8%) and normonatremic patients (5%).

Conclusion: Sodium imbalances are significant contributors to AMS. Early detection and targeted correction of serum sodium levels can reduce complications and improve patient outcomes in the emergency setting.

KEYWORDS: Altered Mental Status (AMS), Hyponatremia, Hypernatremia, Tertiary Care Hospital, Electrolyte Imbalance.

INTRODUCTION

Altered mental status (AMS) is a frequent presentation in emergency departments and poses a diagnostic challenge due to its vast differential diagnosis. Among the potentially reversible causes, **electrolyte imbalances**, particularly sodium disturbances, are commonly encountered and often under-recognized [1].

Sodium plays a pivotal role in maintaining osmotic balance and neuronal function. Derangements in serum sodium levels, such as **hyponatremia** (sodium <135 mEq/L) and **hypernatremia** (sodium >145 mEq/L), can significantly impair cerebral function, resulting in confusion, seizures, coma, or death if not managed promptly [2,3].

Hyponatremia is often associated with heart failure, renal disease, syndrome of inappropriate antidiuretic hormone secretion (SIADH), or gastrointestinal losses [4]. Hypernatremia is frequently seen in elderly, debilitated, or septic patients and is associated with water loss or inadequate intake [5,6].

Both conditions require tailored correction strategies. Rapid correction, particularly in chronic hyponatremia, can lead to central pontine myelinolysis, whereas inadequate correction may result in persistent neurological deficits [7]. Similarly, overcorrection of hypernatremia can cause cerebral hemorrhage due to rapid osmotic shifts [8].

Despite their clinical significance, studies focusing on the **comprehensive profile and outcomes of sodium imbalance in AMS patients** are limited. This study aims to fill this gap by examining the **clinical profile, laboratory parameters, etiology, management, and prognosis** of hypo- and hypernatremia in patients presenting to the emergency room with AMS.

MATERIALS AND METHODS

Study Design and Setting

A prospective observational study was carried out in the Emergency Medicine Department of a tertiary care hospital between January and December 2024.

Inclusion Criteria

- Adults aged ≥ 18 years
- Presenting with altered mental status (GCS <15)
- Diagnosed with hypo- or hypernatremia (based on serum sodium levels)

Exclusion Criteria

- Head trauma
- Known psychiatric illness
- Patients with known CNS disorders (e.g., stroke, tumor)

Data Collection

Demographic details, vital signs, Glasgow Coma Scale (GCS) scores, comorbidities, serum sodium levels, osmolality, and imaging reports were collected. Etiology was determined through clinical assessment, lab results, and physician diagnosis.

Patients were divided into three categories:

- **Hyponatremia:** Serum sodium <135 mEq/L
- **Hypernatremia:** Serum sodium >145 mEq/L
- **Normonatremia:** 135–145 mEq/L (control group)

Management

Sodium disturbances were corrected based on severity and duration (acute/chronic). Hypertonic saline or fluid restriction was used for hyponatremia; hypotonic fluids or oral water replacement for hypernatremia.

Outcome Measures

- Recovery of consciousness
- Duration of hospital stay

- Complications (seizures, cerebral edema)
- Mortality

Statistical Analysis

Data were analyzed using SPSS v25.0. Chi-square test and ANOVA were used for categorical and continuous variables respectively. A p-value <0.05 was considered statistically significant.

RESULTS

Out of 150 patients, 68 (45.3%) had hyponatremia, 42 (28%) had hypernatremia, and 40 (26.7%) were normonatremic.

Table 1: Demographic and Clinical Profile

Parameter	Hyponatremia (n=68)	Hypernatremia (n=42)	Normonatremia (n=40)
Mean Age (years)	65.8 ± 12.3	71.4 ± 13.1	61.2 ± 10.5
Male (%)	61.8%	66.7%	55%
GCS ≤ 8 (%)	36.7%	45.2%	20%
Seizures (%)	20.6%	14.3%	5%
Mortality (%)	11.8%	19%	5%

DISCUSSION

This study highlights the significant association of sodium imbalances with altered mental status and poor outcomes in emergency settings. **Hyponatremia** emerged as the most prevalent abnormality, consistent with findings from earlier studies [9,10].

In our analysis, patients with hyponatremia often presented with lethargy, seizures, and lower GCS scores. These findings are in line with studies showing that hyponatremia-induced cerebral edema can impair consciousness [11].

Hypernatremia, although less common, was associated with higher mortality, particularly in elderly and septic patients. The underlying mechanism is likely due to intracellular dehydration and neuronal shrinkage [12]. Similar mortality trends have been reported by Palevsky et al. and Adrogue& Madias [13,14].

Management of sodium imbalances remains a challenge. Overcorrection risks neurological damage, whereas undercorrection prolongs symptoms and hospital stay. Hence, individualized correction plans based on duration and severity are crucial [15].

This study emphasizes the **need for routine electrolyte assessment in AMS cases**. Emergency physicians should consider sodium abnormalities early in diagnostic workups to prevent irreversible complications.

CONCLUSION

Sodium imbalances are significant contributors to altered mental status in emergency presentations. Hyponatremia was more frequent, but hypernatremia carried higher mortality. Timely diagnosis and cautious correction of serum sodium can improve outcomes and reduce hospital burden.

Acknowledgment: We thank the Emergency Department staff and biochemistry laboratory team for their support during the study.

Conflict of Interest: The authors declare no conflict of interest.

REFERENCES

1. Adrogué HJ, Madias NE. Hyponatremia. *N Engl J Med.* 2000 May 25;342(21):1581–1589.
2. Sterns RH. Disorders of plasma sodium — causes, consequences, and correction. *N Engl J Med.* 2015 May 21;372(1):55–65.
3. Upadhyay A, Jaber BL, Madias NE. Incidence and prevalence of hyponatremia. *Am J Med.* 2006 Jul;119(7 Suppl 1):S30–S35.
4. Hoorn EJ, Zietse R. Diagnosis and treatment of hyponatremia: compilation of the guidelines. *J Am Soc Nephrol.* 2017 Mar;28(5):1340–1349.
5. Arieff AI. Management of severe hypernatremia. *Kidney Int.* 1999 Mar;55(3):1236–1247.
6. Lindner G, Funk GC. Hypernatremia in critically ill patients. *J Crit Care.* 2013 Apr;28(2):216.e11–216.e20.
7. Verbalis JG. Brain volume regulation in response to changes in osmolality. *Neuroscience.* 2010 Apr;168(4):862–870.
8. Moritz ML, Ayus JC. Preventing neurological complications from dysnatremias in children. *Pediatrics.* 2005 Feb;116(2):e643–e651.
9. Terzian C, Friedenberg AS, Malcolm J. Hyponatremia in the emergency department. *Am J Emerg Med.* 2009 May;27(6):701–704.
10. Kovesdy CP, Lott EH, Lu JL, et al. Hyponatremia, hypernatremia, and mortality in patients with chronic kidney disease. *Am J Nephrol.* 2012;35(6): 556–563.
11. Ayus JC, Arieff AI. Brain damage and postoperative hyponatremia. *JAMA.* 1998 Feb 4;279(2):152–158.
12. Palevsky PM, Bhagrath R, Greenberg A. Hypernatremia in hospitalized patients. *Ann Intern Med.* 1996 Jul 1;124(2):197–203.
13. Adrogué HJ, Madias NE. Hypernatremia. *N Engl J Med.* 2000 May 25;342(20):1493–1499.
14. Singh TD, Fugate JE, Rabinstein AA. Central pontine and extrapontine myelinolysis: a systematic review. *Eur J Neurol.* 2014 Dec;21(12):1443–1450.
15. Sterns RH, Hix JK, Silver SM. Treatment of hyponatremia. *Curr Opin Nephrol Hypertens.* 2010 Nov;19(6):493–498.